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Introduction 

E. coli mazEF is a toxin -antitoxin system that was discovered by us as being responsible for Programmed Cell Death (PCD)(1), 

and is  since extensively studied by us (2-4) and by others (5).  We have also  shown  that E. coli mazEF-mediated cell death is 

a population phenomenon requiring the E. coli quorum sensing factor EDF (Extracellular Death Factor) (6-7).  Structural 

analysis revealed that EDF is the linear penta-peptide Asn-Asn-Trp-Asn-Asn, required for triggering mazEF-mediated cell death 

(6). The toxin MazF is a sequence-specific endoribonuclease that preferentially cleaves single-stranded mRNAs at ACA 

sequences (8,9). We have shown that EDF amplifies the endoribonucleolytic activity of MazF (10). As previously reported (8), 

MazF induction causes inhibition of protein synthesis. However,  we have reported  that surprisingly this inhibition was not 

complete: though MazF led to the inhibition of the synthesis of most proteins (about 90%), it selectively enables the specific 

synthesis of about 10% of proteins (3). Some of those proteins were required for the death of most of the population. We have 

recently elucidated the molecular mechanism responsible for the selective synthesis of these proteins. We found that: a) MazF 

cleaves at ACA sites at or closely upstream to AUG-start codons of specific mRNAs, and thereby generating leaderless mRNAs 

belonging to a novel “Leaderless regulon”; and b) MazF targets the 16S rRNA within the 30S ribosomal subunit at the decoding 

centre, thereby removing 43 nucleotides from the 3’-terminus. Since these 43 nucleotides include the anti-SD (Shine-Dalgarno) 

region, these deficient ribosomes, that we call “stress ribosomes”, are selectively able to translate the generated leaderless 

mRNAs (4).  Thus, under stressful conditions, MazF is induced, which leads to the generation of a novel “leaderless regulon” 

that is translated by the novel “stress ribosomes”, producing a distinct pool of “stress proteins”  Some  of  these proteins leads 

to the death of the bacterial population.

Recently, using confocal microscopy and FACS analysis we showed that under condition of sever DNA damage, the triggered 

EDF-mazEF-mediated cell death pathway leads to the inhibition of a second cell death pathway. The latter is an Apoptotic-Like 

Death that we have called ALD; ALD is mediated by recA and lexA (10). The well known, extensively studied SOS pathway 

(reviewed by 11-15) is also a cellular response to DNA damage, and is also mediated by recA-lexA.  In an uninduced cell, the 

lexA gene product, LexA, acts as a repressor of more than 40 genes (16-17), including recA and lexA, by binding to operator 

sequences (called SOS box) upstream to each gene or operon. Under conditions of DNA damage, regions of single-stranded 

DNA are generated that convert RecA to an active form that facilitate an otherwise latent capacity of LexA (and some other 

proteins like UmuD and the CI repressor) to autodigest (11-12, 14-16, 18). Here we asked: Does the E. coli EDF-mazEF 

pathway inhibit the SOS bacterial response? The mazEF pathway is present on the chromosomes of most E. coli strains 

(19,20).  Therefore, If the EDF-mazEF pathway inhibits the SOS response, why is the SOS response found in so many E. coli 

strains?  Perhaps the EDF-mazEF pathway is present but inactivated in those strains? 

Specific Aims

We   undertook   the following  main directions:

1)We asked : Does the E. coli EDF-mazEF pathway inhibit the SOS bacterial  

  response? 

2)The mazEF pathway is present on the chromosomes of most E. coli strains (19,20).  Therefore, If the EDF-mazEF pathway 

inhibits the SOS response, why is the SOS response found in so many E. coli strains?  Perhaps the EDF-mazEF pathway is 

present but inactivated in those strains.

Results 

In E. coli strain MC4100relA+, the SOS response is prevented by the mazEF module and by some genes downstream from 

mazEF . 

To study the effect(s) of the mazEF mediated pathway on the SOS response, we used plasmid pL(lexO)-gfp (21), which bears 

gfp, the gene for the green fluorescent protein (GFP), under the control of the lexA operator, lexO. In this system, under 

uninduced  conditions, LexA represses gfp transcription by binding to the SOS box in the gene operator, lexO. Under DNA 

damage, RecA becomes activated, and acts as a co-protease stimulating the inactivation of LexA by auto-cleavage. Thereby 

the gfp gene can be transcribed, and its fluorescence can be detected. Thus, in this system, fluorescence is a reporter for the 

RecA dependent SOS response. Using this fluorescence reporter system, we caused DNA damage by adding nalidixic acid 

(NA) (10μg/ml) to the cultures (22). Our experiments have revealed that the SOS response was only permitted in E. coli strain 

MC4100relA+ in which the mazEF genes have been  deleted, and not in its WT MC4100relA+ (Fig. 1A). Thus, our results 

suggest that mazEF may prevent the SOS response. 

Previously, we reported that the induction of the mazEF mediated-death pathway activates the selective synthesis of two 



groups of proteins: the products of genes yfbU, slyD, yfiD, clpP, ygcR, that participate in the death process (the “death genes”), 

and the products of genes elaC and deoC that lead to cell survival (the “survival genes”) (2). Here, we found that deleting the 

“death genes” allowed the SOS response to take place (Fig. 1B-F); however deleting the “survival genes” did not (Fig.S2). 

These results support the hypothesis that the SOS response cannot take place in the presence of mazEF-mediated death 

pathway.

The Extra-Cellular Death Factor (EDF) is involved in the inhibition of the SOS response. 

Since, in previous work, we showed that EDF, the penta-peptide NNWNN,  is involved in EDF-mazEF mediated death (6), and 

here we found that the action of mazEF module prevented the SOS response (Fig. 1), we asked if, in addition to the mazEF 

module, the presence of EDF is also involved in the inhibition of the SOS response. We have previously demonstrated that clpX 

is required for the production of EDF (7). Here we found that the SOS response was permitted not only in an E. coli 

MC4100relA+ strain from which we deleted mazEF (MC4100relA+∆mazEF) (Fig 1A), but also when, instead of deleting mazEF, 

we deleted clpX (MC4100relA+∆clpX) (Fig. 2A). This effect seems to be due to the lack of EDF  because: (a) the addition of 

EDF partially inhibits the studied SOS response (by 30%), and (b) the SOS response is not affected at all by the addition of 

iEDF (Fig.2A), the penta-peptide NNGNN, in which the central and crucial tryptophan has been replaced by glycine (19). 

Adding iEDF to the MC4100relA+∆clpX culture did not affect the SOS response at all (Fig. 2A). An additional support that EDF 

is involved in the mazEF mediated inhibition of the SOS response is derived from our studies with E. coli strain MG1655. In our 

previous work, we showed that E. coli strain MG1655, which carries the mazEF gene pair, is defective in the production of and 

the response to EDF (8). Here we found that, despite the presence of mazEF, the SOS response took place in strain MG1655 

(Fig. 2B). Furthermore, 240 minutes after adding EDF, we observed a 50% reduction in the SOS response; in contrast, adding 

iEDF did not cause any reduction in the SOS response (Fig. 2B). All of these results support our hypothesis that {the SOS 

response was permitted in the absence of EDF.

Using our fluorescence reporter system, we tested the SOS response in four additional E. coli strains. In strains AB1157, 

AB1932, and SS996, the addition of EDF did not inhibit the SOS response (data not shown). However, in E. coli strain 

BW25113, which has commonly been used to study the phenomena of the SOS response (23-24), we were surprised to 

observe that the addition of EDF did prevent the SOS response (Fig. 2C). Adding EDF to E. coli strain BW25113 led to a 60% 

reduction in the SOS response; again, as in the case for strains MC4100relA+clpX (Fig 2A) MG1655(Fig 2B), adding iEDF did 

not lead to a reduction in the SOS response (Fig.2C).

The stringent response, known to activate the mazEF-mediated death pathway, inhibited the SOS response. 

Previously we found that the nutritional starvation signal ppGpp, responsible for the stringent response (25),  is involved in the 

mazEF-mediated cell death (1). Here we asked: Is the SOS response  permitted in E.coli strains defective in ppGpp production. 

To this end we first used E.coli strain MC4100relA1 in which the relA gene is inactivated by an insertion (relA1) (26). Indeed, we 

did observe the  SOS response in MC4100relA1 strain. The plasmid pZA31-relA bears an anhydrotetracycline-inducible relA 

gene.  When this relA1 strain harbored pZA31-relA, and when we added anhydrotetracycline (aTc) to the culture to induce relA, 

we observed no SOS response (Fig.3A).  These results suggested that probably additional E. coli strains, commonly used in 

studies of the SOS response were defective in ppGpp synthesis. Here, we studied E. coli strains AB1157, AB1932, BW25113, 

MG1655, and SS996 for ppGpp production by their ability to grow in M9 plates containing 3-amino-1,2,4-triazole (AT). AT is a 

competitive inhibitor of imidazoleglycerol-phosphate dehydratase, a key enzyme for histidine production, and thereby causing 

histidine starvation leading for the production of ppGpp (27). Therefore, the ability to grow in the presence of AT is provides an 

assay for ppGpp production (27). We found that among these five strains, AB1157 and SS996 did not grow in the presence of 

AT, indicating that they were defective in (p)ppGpp production (data not shown). Note that, as we have shown here (Fig. 3B 

and Fig. 3C) and as has been previously shown by others (18, 28-30), the SOS response was permitted in both E. coli strains 

AB1157 and SS996. Moreover, as we found for MC4100relA1 (Fig. 3A), when these strains harbored plasmid pZA31-relA and 

in the presence of aTc, we observed no the SOS response (Fig. 3B and Fig.3C). These results support the idea that, in E. coli 

strains AB1157 and SS996, a defect in (p)ppGpp production, and thereby in the expression of the EDF-mazEF mediated-death 

pathway, allowed the SOS response to take place.

The SOS response is permitted in E. coli strains carrying prophage lambda. One of the few genes expressed by phage λ in its 

lysogenic state is λrexB (31-33). In previous work, we showed that its product, λRexB, inhibits the degradation of the antitoxic 

labile compound, MazE, thereby preventing mazF mediated death pathway (34). Therefore, we anticipated that, in contrast to 

E. coli strain MC4100relA+ in which the SOS response is prevented (Fig.1A), in the presence of a λ prophage the SOS 

response would be permitted in this strain. As we expected, the presence of the λ prophage overcame the inhibitory effect of 

mazEF on the SOS response (Fig. 4A). Furthermore, in this strain, when we deleted rexB from the prophage λ, the SOS 

response was no longer observed (Fig. 4A). As in the case of E. coli strain MC4100relA+ , we did the same experiment with E. 

coli strain AB1932, in which the SOS response has been observed, and which has been reported to bear a λ prophage on its 

chromosome (29). We observed the SOS response in strain AB1932 (Fig.4B). Deleting rexB from its λ prophage prevented the 

SOS response, while introducing a plasmid bearing a λ prophage and inducing for rexB permitted the SOS response (Fig.4B). 

Thus, our results provide an explanation for the SOS response in strain AB1932. 

Conclusion



The Escherichia coli (E. coli) SOS response is the largest, most complex, and best characterized bacterial network induced by 

DNA damage. It is controlled by a complex network involving the RecA and LexA proteins. Here we have shown that the SOS 

response to DNA damage is inhibited by various elements involved in the expression of the E. coli toxin-antitoxin module 

mazEF. We examined various E. coli strains commonly used for studies of the SOS response, including strains AB1157, 

AB1932, BW25113, SS996, MG1655, and MC4100relA1. We found that each of these strains is either missing or inhibiting  one 

of several elements involved in the expression of the mazEF-mediated death pathway. Thus, the SOS response only took place 

in E. coli cells in which one or more elements of the E. coli toxin-antitoxin module mazEF was not functioning. Based on these 

results, we suggest that the interplay between the SOS response and the mazEF mediated death pathway broaden the degree 

of the bacterial response to DNA damage and thereby to bacterial survival. Our work on the SOS response to DNA damage in 

E. coli,  reflects the complexity of the interplays  between cellular networks, and as such reflects the importance of personalized 

medicine.These results have been recently submitted for publication (35)

MAJOR ACCOMPLISHMENTS

The Escherichia coli (E. coli) SOS response is the largest, most complex, and best characterized bacterial network induced by 

DNA damage.  During the fourth   year  of our research we made an exciting  discovery in  this well studied central bacterial 

cellular response. We have shown for the first time that the EDF-mazEF mediated death pathway inhibits the SOS response. 

Our herein results on, the SOS response to DNA damage in E. coli, reflects the complexity of the interplay between cellular 

networks, and as such reflects the importance of personalized medicine in general,  and specifically in the use of antibiotics due 

to the  expected  diversity of individual  microbiota.
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Figure legends

Figure 1. The effects on the SOS response system of the mazEF module and genes downstream from mazEF. We used E. coli 

MC4100relA+ and its derivatives ∆mazEF (A),∆yfbU(B),∆slyD(C),∆yfiD(D),∆clpP(E), and ∆ygcR (F). We grew the cells, all of 

which harbored plasmid pL(lexO)-gfp in supplemented M9 media, with shaking, at 37°C, to O.D.600 0.5-0.6, and treated (or 

not) with NA (10μg/ml). We measured fluorescence (FU) by fluorometer over a period of 4 hours. All of the values shown are 

relative to those of cells not treated with NA. 

Figure 2. The inhibition of the SOS response by the mazEF pathway required the participation of EDF. We used E. coli strains 

MC4100relA+ with MC4100relA+∆clpX (A), MG1655 (B), or BW25113 (C); all the strains harbored plasmid pL(lexO)-gfp. We 

grew the cells as described in the legend to Fig. 1. When the culture reached O.D.600 0.5-0.6, we added (or not) EDF 

(10ng/ml) or iEDF (100ng/ml). These cultures were incubated without shaking at 37°C for 30 min, after which we added NA 

(20μg/ml) to each sample. Immediately after adding NA, we measured fluorescence (FU) by fluorometer over a period of 4 

hours. The values shown are relative to those of cells that had not been treated with NA.

Figure 3. The SOS response is prevented in E. coli strains bearing a functional relA+ gene. We used E. coli strain 

MC4100relA+ and strains MC4100relA1, MC4100relA1/pZA31-relA(A);AB1157,AB1157/pZA31-relA(B) and SS996, 

SS996/pZA31-relA(C). All of the strains harbored plasmid pL(lexO)-gfp. The cells were grown as described in the legend to Fig. 

1. At O.D.600 0.5-0.6, we added NA (10μg/ml). The strains harboring plasmid pZA31-relA were induced by the addition of aTc 

(10mM), and incubated without shaking at 37°C for 30 min after which we added either NA (10μg/ml) or NA (10μg/ml) plus SH 

(2.5 mg/ml). We measured fluorescence (FU) by fluorometer over a period of 4 hours. The values shown are relative to those of 

cells not treated by NA. 

Figure 4. λ Lysogens overcome the inhibitory effect of mazEF on the SOS response. We used E. coli MC4100relA+ as a control 

strain, and two experimental parent strains lysogenized by phage λ: MC4100relA+λ+, MC4100relA+λ∆rexB, and 

MC4100relA+λ∆rexB/pZA31-rexB(A); and AB1932λ+, AB1932λ∆rexB, AB1932λ∆rexB/pZA31-rexB(B). All of the strains 

harbored plasmid pL(lexO)-gfp. Cells were grown as described in the Legend to Fig. 1 and treated (or not) with aTc. After 30 

min, we added NA (10μg/ml), and measured fluorescence (FU) by fluorometer over a period of 4 hours. The values shown are 

relative to cells not treated with NA. 

Table 1. The identified elements related to the EDF-mazEF pathway that permitted the SOS response in commonly used E. coli 

strains. In each of the E. coli strains in which the SOS response is commonly studied, there was one element that inactivated 

mazEF, and therefore was responsible for the activity of the SOS response. The circles indicate the element that was missing 

(-) or present (+) that permitted the SOS response in each of these strains.
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Figure 1

The effect of the mazEFmodule (A) and its downstream genes (B) on the 
SOS response.
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Figure 2.

A

EDF is involved in the inhibition of the SOS response by the mazEF pathway.
Escherichia coli strains were studied: MC4100relA+∆clpX (A), MG1655 (B), and BW25113. 
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Figure 3 The SOS response is prevented in Escheichia coli strains carry a functional relA+ gene. 
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ƛ lysogen overcomes the inhibitory effect of mazEF on the SOS response. 

Figure 4
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Table 1 
The Identified elements related to the EDF-mazEF pathway that permitted the SOS 
response in commonly used Escherichia coli strains.response in commonly used Escherichia coli strains.

The studied elementstrain

ƛ lysogenEDFppGpp ƛ lysogenEDFppGpp 
production

‐‐+MG1655

+BW25113

-
‐‐+BW25113

‐+‐MC4100relA1

‐+‐AB1157
-
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